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1 Introduction

Empirical researchers often face unbalanced panels when working with observational

datasets. This situation is particularly prevalent when the cross-sectional unit is a firm,

household, or individual. In some instances, as is the case with rotating panels, an

unbalanced panel might result from the survey design where equally sized sets of sample

units are brought in and out of the sample in some specified pattern. In other cases,

incomplete panels might arise due to attrition.

In most circumstances, the panel is unbalanced due to nonrandom selection mecha-

nisms. For example, empirical questions in labor economics often have unbalanced panels

because the labor market outcome variable (i.e., wages) is observed only for individuals

who choose to work. Thus we have nonrandom selection into the labor force, leading to

sample selection bias when ignored.

The theoretical econometrics literature has developed numerous parametric and semi-

parametric estimation procedures to correct for sample selection bias. Wooldridge (1995);

Semykina and Wooldridge (2010); Semykina (2018); Kyriazidou (1997); Rochina-Barrachina

(1999) are just a few notable examples that consider estimation in unbalanced panels for

both linear and non-linear models with exogenous and endogenous covariates.

In this paper, we propose a fully parametric estimation procedure for panel data models

with sample selection, with a common endogenous binary variable in both the outcome

and the selection equations. Such models are especially useful in empirical research with

unbalanced panels when we suspect a primary explanatory variable to be endogenous

in both the outcome equation as well as the selection mechanism. One example of this

situation arises in labor economics when estimating the effect of fertility (or marital)

decisions on wages. When measuring the impact of fertility decisions on wages, for

example, the decision to have kids is endogenous in both the wage (outcome) equation

and the labor force participation (selection) equation. This scenario is not unique to labor
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economics. For example, in health economics, we might suspect that an endogenous

variable, such as health insurance choice, will affect hospital visits (the selection equation)

and, subsequently, health care expenditure (the outcome variable).

il Kim (2006) considers similar models where the selection equation and the censored

equation contain a common dummy variable. Specifically, il Kim (2006) describes a two-

step estimation procedure that obtains correction terms to account for the endogenous

binary variable. However, his paper only considers cross-sectional models. For many

microeconometric applications, panel data is more desirable as it allows the researchers to

explicitly incorporate unobserved time-constant heterogeneity, thus allowing for factors

such as cognitive ability, motivation, etc. In addition, it is often desirable to allow this

unobserved time-constant heterogeneity to be correlated with the other observed covari-

ates arbitrarily. Given the increased availability and use of panel data models in empirical

research, it is useful to obtain an estimation procedure specifically for panel data that

allows researchers to simultaneously account for sample selection, common endogeneity,

and unobserved heterogeneity.

Recently, Semykina (2018) considers the effect of young children on a binary outcome

variable, women’s self-employment, while addressing both endogeneity and sample se-

lection in panel data models. She constructs and estimates a likelihood function that

corrects for a common endogenous dummy variable and finds that this substantially af-

fects the estimation results. Specifically, she finds that when corrected for both sample

selection and endogeneity, the estimates roughly triples compared to the uncorrected

estimators, emphasizing the importance of accounting and correcting for the common

endogeneity of the variable of interest.

Our model and estimation procedure differs from Semykina (2018) in two key ways.

First, we consider a continuous outcome variable. While this difference results in simpler

model, in practice, many empirical researchers continue to need models for situations
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where the outcome variables is roughly continuous, such as wages, hours worked, health

care expenditure, etc. Additionally, researchers often use LPM when the outcome variable

is binary, due to the ease of interpreting coefficients. In fact, we used the procedure

proposed in this paper to replicate the empirical application in Semykina (2018). The

findings from this exercise are quantitatively similar to those presented in Semykina

(2018).

Secondly, we obtain a two-step estimation procedure for panel data models for contin-

uous outcome variables with sample selection that allows for time-constant unobserved

heterogeneity and contains a binary endogenous variable common to both the selection

and outcome equation. Our two-step estimation procedure for panel data models relaxes

the computational and non-convergence issues that frequently accompany maximizing a

likelihood function. For example, the first step of our proposed procedure can be esti-

mated using bivariate probit, and the second step is executed using pooled OLS. We obtain

valid inference analytically by using Wooldridge (2010) or by formulating the estimation

procedure as one big method of moment problem. This method accounts for the fact that

pre-estimated parameters are used in the second step and correct the standard errors.

Alternatively, a panel bootstrap routine is also straightforward and is how we calculate

the standard errors in our empirical application presented in Section 4.

After developing our estimation procedure, we examine the finite sample properties

of our proposed estimator through a series of Monte Carlo experiments and find that in

cases where both common endogeneity and sample selection are severe, the estimator

we recommend performs better than the estimators that ignore either endogeneity or

sample selection, or both. In addition, our estimator is also robust to the distributional

mispecifications in the model.

Finally, to illustrate how our procedure performs empirically, we revisit the effect of

fertility decisions on the wages of white women using data for the years 1982-2006 from
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the National Longitudinal Survey for Youth 1979 (NLSY1979). We present the findings

from our estimation procedure alongside four frequently used estimation procedures:

simple OLS, fixed effects (FE), fixed effects two-stage least squares (FE2SLS), and Heckman

selection. We find that correcting for only one source of bias, either self-selection or

endogeneity, may lead to either overestimating or underestimating of the negative effects

of a third child on wages. When addressing both sources of biases, the impact of three

children on the hourly wage rate of white women is estimated to be about -23.8%. This

result is significantly larger than OLS, FE, and Heckman selection, but significantly smaller

than FE2SLS.

The remainder of this paper is structured as follows. In Section 2, we describe the

model and the estimation procedure. Section 3 reports the finite sample performance of

the estimator. In Section 4, we consider the empirical application where we revisit the

effect of fertility decisions on wages for women. Section 5 concludes.

2 Econometric Methodology

We begin with the model for the latent response variable y∗it for an individual i at time

t as:

y∗it = xit1β1 + δdit + ci1 + uit1 (1)

where xit1 is a 1 × K1 vector of exogenous variables, ci1 is the time constant unobserved

heterogeneity in the outcome equation and uit1 is the idiosyncratic error. The covariates

xit1 are assumed to be uncorrelated with the idiosyncratic errors. The key variable of

interest is dit, which is a scalar binary variable which will be allowed to be endogenous

to both outcome equation and selection equation. As we will see later, dit will indicate a

third child in the household, which will be allowed to be endogenous in both the labor

force participation and wage equation.
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We specify a model for dit as:

dit = 1[d∗it > 0] = 1[xit2β2 + ci2 + uit2 > 0] (2)

where xit2 is a 1 × K2 vector of observable characteristics assumed to be exogenous, ci2

contains time-constant unobserved heterogeneity and uit2 is idiosyncratic error. We can

interpret equation (2) as the model for fertility (or fertility equation) hereafter.

If we interpret equation (1) as the wage equation, then the key issue is that although

it is specified for the entire population, the outcome is observed only for the selected

population of individuals who choose to work. Formally, we introduce this sample

selection by defining a latent variable s∗it:

sit = 1[s∗it > 0] = 1[xit3β3 + γdit + ci3 + uit3 > 0] (3)

where xit3 is a 1 × K3 vector of observable characteristics assumed to be exogenous, ci3 is

time-constant unobserved effect and uit3 is the time-varying idiosyncratic error. Thus we

can interpret sit as the selection indicator that is equal to 1 if an individual i works in year

t and is zero otherwise. Equation (3) could follow from a standard theoretical model of

labor supply, where the labor force participation decision arises as a solution to a utility

maximization problem subject to time and budget constraints. Note that we also have the

binary indicator dit in our selection model denoting that both constraints depend on the

presence of this dummy variable (i.e having a third child.)

As a result of sample selection, we have the observed outcome (such as wage) as

yit = sit × y∗it (4)

We define xit as the union of mutually exclusive elements of (xit1, xit2, xit3) that includes

unity and assume that xit and dit are always observed. We also assume that conditional on
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the unobserved effects, the vector of observable variables xit is independent of the vector

of idiosyncratic errors {uit2,uit3,uit1}. However, we do not impose any restrictions on the

serial dependence properties of the idiosyncratic errors. In addition, we allow for the

time-constant unobserved effects in the three equations to be arbitrarily correlated with

xit.

We would like to allow for the unobserved time-constant heterogeneity to be correlated

with the strictly exogenous variables. We use Mundlak (1978) approach to model the time-

constant unobserved heterogeneity in terms of the time means of the exogenous variables.

Mundlak device also known as correlated random effects is a widely used tool with linear

as well as nonlinear panel data models. Recent example are: Semykina and Wooldridge

(2018); Semykina (2018); Semykina and Wooldridge (2010); Wooldridge (2019); Jäckle and

Himmler (2010), Maurer et al. (2011), Papke and Wooldridge (2008).

Thus we have:

ci1 = xiξy + ai1 (5)

ci2 = xiξ2 + ai2 (6)

ci3 = xiξ3 + ai3 (7)

with xi ≡ T−1 ∑T
r=1 xir; and ai1, ai2, ai3 are unobserved effects assumed to be independent of

xit. Defining composite errors as vit1 ≡ ai1 + uit1, vit2 ≡ ai2 + uit2, vit3 ≡ ai3 + uit3 and upon

substitution, we obtain

yit = (xit1β1 + δdit + xiξ1 + vit1) × sit (8)

dit = 1[xit2β2 + xiξ2 + vit2 > 0] (9)

sit = 1[xit3β3 + γdit + xiξ3 + vit3 > 0] (10)
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2.1 A switching equation framework

To obtain the estimating equation that accounts for the endogeneity of the common

dummy dit in the selection and outcome model, we formulate our model in a switching

regression framework. In particular, we posit the existence of two regimes defined as

defined as dit = {1, 0}. In studying the effect of fertility decisions on wages, for example,

one could interpret the regimes as the one ”with-kids” with dit = 1 and one ”without-kids”

with dit = 0. In this context, formulating our model in a switching regression framework

allows us to differentiate the labor force participation decision as well as the outcome

variable (such as wages) for those who have children and those who do not. Similarly,

if one was studying the effect of the type of health insurance on health expenditure, one

could interpret the regimes as one with an HMO plan (Health Maintenance Organization),

for example, and the other with a PPO (Preferred Provider Organization) plan.

In this paper, we postulate the existence of selection and outcome models in two

regimes. That is for dit = 0, we have:

s∗it0 = xit3β3 + xiξ3 + vit3; sit0 = 1[s∗it0 > 0] (11)

y∗it0 = xit1β1 + xiξ1 + vit1 (12)

and for dit = 1, later interpreted as the regime ”with-kids”, the labor force participation and

the wage equations are:

s∗it1 = xit3β3 + γ + xiξ3 + vit3; sit1 = 1[s∗it1 > 0] (13)

y∗it1 = xit1β1 + δ + xiξ1 + vit1 (14)

These equation are later interpreted as the labor force participation and wage equations

in the regime ”without-kids”, and regime ”with-kids” respectively. 1

1One can allow separate errors for the selection and outcome equations in the two regimes. In other
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Since we have yit0 = sit0 × y∗it0 and yit1 = sit1 × y∗it1 in regime 0 and regime 1 respectively,

we can describe the observed outcome as

yit = dityit1 + (1 − dit)yit0; t = 1, 2, ...,T (15)

Next, we describe the correction terms for each regime, which are comprised of two

parts: one corrects for the bias that arises from the endogenous switching and the other

corrects for the sample selection bias for each regime characterized by the value of dit. To

do this, we first impose a distributional assumption on our error terms for t = 1, ...,N:


vit1

vit2

vit3

 ∼ Normal




0

0

0

 ,

σ2

1 ρ12σ1 ρ13σ1

1 ρ23

1



 (16)

To define the correction terms, we consider the conditional mean equation:

E[yit|xi, dit, sit = 1] = xityβy+δydit+xiξy+ditE[vit1|xi, dit = 1, sit = 1]+(1−dit)E[vit1|xi, dit = 0, sit = 1]

(17)

Finally, using the normality assumption, we use Poirier (1980) to obtain the panel data

words, we can have {vit30, vit31}; vit20 , vit21 in the selection equations and {vit10, vit11}; vit10 , vit11 in the
outcome equation. This gives us a generalized model where (sit0, sit1) = (1, 0) even when γ > 0 and yit0 > yit1
even when δy > 0. Alternatively, (sit0, sit1) = (0, 1) even when γ < 0 and yit0 < yit1 even when δy < 0. See
il Kim (2006) for details.
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versions of the correction terms in il Kim (2006). We have:

E[vit1|xi, dit = 1, sit = 1] ≡ hit1 = ρ12σ1


φ(xit2β2 + xiξ2)Φ

(
xit3β3+γ+xiξ3−ρ23(xit2β2+xiξ2)

√
1−ρ2

23

)
Φ(xit2β2 + xiξ2, xit3β3 + γ + xiξ3;ρ23)

 (18)

+ ρ23σ1


φ(xit3β3 + γ + xiξ3)Φ

(
xit2β2+xiξ2−ρds(xit3β3+γ+xiξ3)

√
1−ρ2

23

)
Φ(xit2β2 + xiξ2, xit3β3 + γ + xiξ3;ρ23)


≡ µ11hit11 + µ12hit12 (19)

and

E[vit1|xi, dit = 0, sit = 1] ≡ hit0 = ρ12σ1

−
φ(xit2β2 + xiξ2)Φ

(
xit3β3+xiξ3−ρ23(xit2β2+xiξ2)

√
1−ρ2

23

)
Φ(−(xit2β2 + xiξ2), xit3β3 + xiξ3;−ρ23)

 (20)

+ ρ13σ1


φ(xit3β3 + xiξ3)Φ

(
−(xit2β2+xiξ2)+ρ23(xit3β3+xiξ3)

√
1−ρ2

23

)
Φ(−(xit2β2 + xiξ2), xit3β3 + xiξ3;−ρ23)


≡ µ01hit01 + µ02hit02 (21)

where µ11 ≡ ρ12σ1, µ12 ≡ ρ12σ1, µ01 ≡ ρ12σ1, µ02 ≡ ρ13σ1. φ(.) denotes univariate standard

normal pdf, Φ(.) denotes univariate standard normal cdf and Φ(a, b; r) denotes bivariate

standard normal cdf with correlation coefficient r evaluated for (a, b)

To obtain these correction terms, one can easily formulate a maximum likelihood for
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bivariate probit model for panel data. In particular, we define

P00it ≡ Prob(dit = 0, sit = 0, ) = Φ(−(xit2β2 + xiξ2),−(xit3β3 + xiξ3);ρds) (22)

P01it ≡ Prob(dit = 0, sit = 1) = Φ(−(xit2β2 + xiξ2), (xit3β3 + xiξ3);−ρds) (23)

P10it ≡ Prob(dit = 1, sit = 0) = Φ(xit2β2 + xiξ2,−(xit3β3 + xiξ3 + γ);−ρds) (24)

P11it ≡ Prob(dit = 1, sit = 1) = Φ(xit2β2 + xiξ2, xit3β3 + xiξ3 + γ;ρds) (25)

Based on these probabilities, the likelihood function is given as

Lit =
[
P(1−dit)(1−sit)

00it P(1−dit)sit
00it Pdit(1−sit)

10it Pditsit
11it

]
(26)

Finally, to obtain our estimating equation, we simply plug-in the correction terms, as

described in (20) and (18):

yit = xit1β1 + δdit + xiξ1 + dit[µ11hit11 + µ12hit12] + (1 − dit)[µ01hit01 + µ02hit02] + ηit (27)

where E[ηit|xi, dit, sit] = 0.

2.2 Two-step estimating procedure

We propose a two-step estimating procedure:

Procedure 2.1. 1. Using all the N × T observations and a full set of time dummies,

estimate the selection equation and the endogenous dummy variable equation si-

multaneously by estimating the likelihood in equation (26)). Use the parameter

estimates to obtain the estimates for the correction terms defined in (18) and (20).

Denote the estimators by ĥit1, ĥit0.

2. Using the selected sample, that is for sit = 1, run a Pooled OLS of yit on xit1, dit, xi, ditĥit1, (1−

dit)ĥit0.
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This estimation procedure allows empirical researchers to effectively account for an

endogenous dummy variable in both the selection equation as well as in the outcome

equation and can be easily implemented in popular software packages. In Stata for

example, the first step entails estimation of a bivariate probit and the second step entails

OLS estimation on the selected sample with auxiliary correction terms. Furthermore,

while excluded covariates for the selection equation and dummy variable equation would

certainly increase the credibility of the estimates in the empirical application, they are not

required for the estimation due to the highly nonlinear functional forms of the correction

terms.

2.3 Asymptotics

Deriving the asymptotic properties for the estimator described in Procedure 2.1 is a

straighforward extension of the consistency results and asymptotic variance formulas

found in Newey and McFadden (1994) and therefore proofs are omitted. We begin by

first formulating our two-step estimation procedure into a method of moment estimation

procedure. In particular, let wit and α denote the covariates and the parameters of the

first step biprobit model respectively and define git ≡ git(wit, α) ≡ ∂lnLit
∂α . Similarly, denote

the covariates and the parameters in the second step by zit and β respectively and define

mit ≡ mit(wit, zit, α, β) ≡ sitz′it(yit − zitβ). Thus for each i we have gi ≡

[
g′i1 . . . g′iT

]′
and

mi ≡

[
m′i1 . . . m′iT

]′
. The moment equations are given as

g̃i(wi, zi, θ) ≡

 gi(wi, α)

mi(wi, zi, α, β)

 (28)
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Denote the true parameters as θ∗ ≡ (α′
∗
, β′
∗
)′ ∈ Θ, where Θ is the parameter space and our

estimators θ̂ ≡ (α̂, β̂) are defined as

N∑
i=1

g̃i(wi, zi, θ̂) ≡


∑N

i=1 gi(wi, α̂)∑N
i=1 mi(wi, zi, α̂, β̂)

 = 0 (29)

The following proposition is a direct application of Theorem 2.6 of Newey and McFad-

den (1994) and gives gives the consistency property of our estimator under standard

identification, continuity and compactness assumptions

Proposition 2.1. (Consistency) For the outcome model described in equation (1), dummy

variable model described in equation (2), sample selection model described in (3), under

equations (5, 6, 7) and under the parametric assumption given in equation (16), suppose

that (a) E[g̃i(wi, zi, θ∗) = 0 and E[g̃i(wi, zi, θ) , 0 for θ , θ∗; (b) Θ is compact; (c) g̃i(wi, zi, θ)

is continuous at each θ ∈ Θ with probability one; (d) E[supθ∈Θ||g̃i(wi, zi, θ)|| < ∞ then our

estimator obtained in Procedure 2.1 is consistent, that is θ̂→p θ∗.

To obtain an expression for the asymptotic variance for β that corrects for the first

step estimation, we apply Theorem 6.1 of Newey and McFadden (1994). In particular,

we first define Gα∗ ≡ E
[
∂gi
∂α

]∣∣∣∣
α=α∗

; Mα∗ ≡ E
[
∂mi
∂α

]∣∣∣∣
θ=θ∗

; Mβ∗ ≡ E
[
∂mi
∂β

]∣∣∣∣
θ=θ∗

. Further letting

g∗i ≡ gi(wi, α∗); m∗i ≡ mi(wi, zi, θ∗) and defining V∗gg ≡ E[gig′i]; V∗gm ≡ E[gim′i]; V∗mg ≡

E[mig′i]; V∗mm ≡ E[mim′i] we obtain the expression for the asymptotic variance of our

estimator that allow for heteroskedasticity and arbitrary serial autocorrelation over time:

Proposition 2.2. (Asymptotic Normality) For the outcome model described in equa-

tion (1), dummy variable model described in equation (2), sample selection model de-

scribed in (3), under equations (5, 6, 7) and under the parametric assumption given

in equation (16), suppose that conditions in Proposition 2.1 are true and suppose (a)

θ∗ ∈ interior Θ; (b) g̃i(wi, zi, θ) is continuously differentiable in a neighborhood N of θ∗

with probability approaching one; (c) E[g̃i(wi, zi, θ∗] = 0 and E[||g̃i(wi, zi, θ∗)||2 is finite; (d)
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E[supθ∈N ||g̃i(wit, zi, θ)|| < ∞; (e) Gα∗ ,Mα∗ ,Mβ∗ are invertible; then α̂ and β̂ are asymptotically

normal and
√

N(β̂ − β∗)→d Normal (0,Vβ) (30)

where Vβ ≡M−1
β∗ V ∗mm M−1′

β∗ + M−1
β∗Mα∗[G−1

α∗V ∗gg G−1′
α∗ ]M′

α∗M−1′
β∗

Condition (a) - (d) are standard assumptions that are needed for the moment conditions

to be satisfied, condition (e) require the matrices to be invertible for the existence of the

asymptotic variance. The asymptotic variance formula consists of two components. The

first component is the asymptotic variance of β̂ if α and thus hit1, hit0 are assumed to be

known. The second component is the additional variation due to the fact that α and

thus hit1, hit0 are estimated in the first step. Finally, we can obtain valid inference by

estimating analytical standard errors that are robust to heteroskedasticity and arbitrary

serial correlation as:

V̂β = M̂−1
β V̂mmM̂−1′

β + M̂−1
β M̂α[Ĝ−1

α V̂ggĜ−1′
α ]M̂′

αM̂−1′
β (31)

where Ĝα ≡
∑N

i=1

[
∂gi
∂α

]∣∣∣∣
α=α̂

; M̂α ≡
∑N

i=1

[
∂mi
∂α

]∣∣∣∣
θ=θ̂

; M̂β ≡
∑N

i=1

[
∂mi
∂β

]∣∣∣∣
θ=θ̂

. Further letting ĝi ≡

gi(wi, α̂); m̂i ≡ mi(wi, zi, θ̂) and defining V̂gg ≡
∑N

i=1[ĝi ĝ′i] =
∑N

i=1
∑T

t=1[ĝit ĝ′it]; V̂mm ≡ E[m̂im̂′i] =∑N
i=1

∑T
t=1[m̂itm̂′it]

Alternatively, since biprobit and OLS are easily estimated, using a panel bootstrap

routine is straightforward.

3 Monte Carlo Simulations

In this section, we study the finite sample properties of the proposed estimator using

Monte Carlo experiments. yit, dit, sit are generated as given in (8), (9), (10) with β1 = 1, δ =

1, β2 = 1, β3 = 1, γ = 0.5, ξ1 = (0, 0.1, 0.2, 0.1)′, ξ2 = (0, 0.2, 0.3, 0.4)′, ξ3 = (0, 0.2, 0.1, 0.1)′.
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The exogenous variables are generated as:

xit1 = bi1 + εit1

xit2 = bi2 + εit2

xit3 = bi3 + εit3

where the unobserved effects bi1, bi2, bi3 are distributed as Normal(0, 1) and the correlation

coefficient is 0.2 εti1, εit2 are idiosyncratic errors that are independent over i and are dis-

tributed as Normal(0, 1). The distribution of the errors vit1, vit2, vit3 is given as: distribution

of vit2 is Normal(0, 1), the distribution of vit3 is ρds ∗ vit2 + (
√

1 − ρ2
ds ∗Norma(0, 1) and vit1 is

Normal(0, 1) + ρsy ∗ vit3 where ρds = ρsy capture the severity of the endogeneity of dummy

in the selection equation and severity of sample selection respectively and their values

varies across designs.

1. DGP 1: In this design there is low sample selection and low endogeneity of the

dummy variable, that is ρds = ρsy = 0.02.

2. DGP 2: This design captures the case when both sample selection and common

endogeneity of the dummy variable in both outcome equation and selection equation

are sever. That is we have ρds = ρsy = 0.4

3. DGP 3: Here we check for the robustness of our proposed estimator to the distribu-

tional assumptions. In particular, we consider Gamma distribution with Gaussian

copula. Let (eit1, eit2, eit3) be drawn from the following multivariate normal distribu-

tion: 
eit1

eit2

eit3

 ∼ Normal




0

0

0

 ,

1 0.25 0.3

1 0.3

1



 (32)

Thus have vitm = (F−1(Φ(eitm); 3.5, 1),m = 1, 2, 3 where F−1(..; 3.5, 1) denotes the inverse
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cumulative distribution function for the Gamma distribution with scale parameter

3.5 and shape parameter 1.

We consider the samples with N = 1000 and T = 10 and run 1000 replications. We

compare the estimators obtained using Procedure 2.1 with several popular estimators.

We estimate the parameters using Pooled OLS (POLS) that ignores the individual het-

erogeneity, sample selection and endogeneity, Fixed Effects (FE), that both ignores both

sample selection and the endogenous dummy variable. We also estimate the parameters

using Fixed Effects 2SLS (FE2SLS), which accounts for the endogenous dummy in the

outcome equation but ignores endogenous sample selection. We also estimate the param-

eters using Heckman’s procedure, which only corrects for sample selection and ignores

the endogeneity of the dummy variable in both outcome equation and sample selection.

The results from the simulation are reported in Table 1.

3.1 Results

In DGP 1, there is low sample selection and low endogeneity of the dummy variable in

the selection model. Consequently, the Heckman estimator, in addition to the proposed,

FE and FE2SLS are unbiased. Heckman estimator has the least RMSE followed closely

by FE estimator. Our proposed estimator performs better than the FE2SLS estimator that

ignores sample selection and endogeneity of the dummy variable in the selection model.

The POLS estimator that ignores endogeneity and sample selection has serious bias, even

in when both are mild.

In DGP 2 we have high sample selection and high endogeneity of the dummy variable

in the selection model. In this case, only our proposed estimator is unbiased and has

the smallest RMSE compared to all other considered estimators. In DGP 3 where we

have non normal distribution, our proposed estimator again outperforms all the other

estimators in terms of having lowest bias and lowest RMSE. This illustrates that our
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Table 1: Simulation Results

Bias SD RMSE

DGP 1: ρds = ρsy = 0.02
Procedure 2.1 -0.01087 0.06329 0.06419
POLS 0.69105 0.04464 0.69249
FE -0.00285 0.03983 0.03991
FE2SLS -0.00722 0.10097 0.10118
Heckman 0.00002 0.03627 0.03625

DGP 2: ρds = ρsy = 0.4
Procedure 2.1 -0.00377 0.07464 0.07470
POLS 0.69890 0.04605 0.70042
FE 0.10045 0.04471 0.10994
FE2SLS -0.04347 0.10177 0.11062
Heckman 0.18193 0.04105 0.18649

DGP 3: NonNormal Distribution
Procedure 2.1 -0.02034 0.14545 0.14679
POLS 1.11528 0.08423 1.11845
FE 0.53170 0.08509 0.53845
FE2SLS -0.03591 0.38488 0.38636
Heckman 0.59290 0.08171 0.59850

proposed estimation procedure is robust to distributional misspecification.

4 Empirical Application

4.1 Revisiting the family gap

In Section 4.3, we will apply our estimation procedure (described in Section 2) to

evaluate the effects of fertility decisions on the hourly earnings for white women. This

empirical question has received substantial attention in labor economics. Even as the

wage gap between men and women has been declining over time, many studies continue

to find a persistent ”family gap”: the phenomenon that women with children, on average,

earn lower wages than women without children. This wage gap persists even after one
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Figure 1: Kernel smoothed empirical distributions of estimators.

controls for differences in education, overall work experience, and full-time and part-time

work experience, and some studies find that the gap is greater among highly-qualified

women (Waldfogel, 1998, 1997; Bütikofer et al., 2018; Anderson et al., 2002).

The labor literature has long recognized the inherent endogeneity of childbearing

decisions, and existing studies have used various creative instruments to account for

the endogeneity of fertility in labor supply models. Commonly used instruments for

childbearing include the occurrence of twin births, the sex composition of the first two

children (Angrist and Evans, 1996), and infertility shocks (Aguero and Marks, 2008). In

general, studies that have instrumented the childbearing variable of interest with twin

births or sex composition of the first two children have found significant, negative effects

of childbearing on wages, though the magnitude is generally smaller than OLS estimates.
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There is a large body of research exploring the role of childbearing on parents’ labor

supply decisions, and whether these decisions can explain the observed wage penalty

(Anderson et al., 2002; Lundberg and Rose, 2000; Angrist and Evans, 1996). Generally,

studies have found that the presence of children decreases both labor market participation

and labor market productivity (Lundberg and Rose, 2000; Anderson et al., 2002; Angrist

and Evans, 1996). However, these decisions potentially explain only a portion of the

observed wage gap. Additionally, studies have shown that women may choose jobs with

lower wages in exchange for characteristics such as flexible schedules, unsupervised break

time, and paid sick leave. This mechanism is reflected, for example, in the substantial

increases in self-employment for women, especially among women with young children

(Boden Jr, 1999; Lombard, 2001; Semykina, 2018).

To the best of our knowledge, the existing empirical investigations into the effects

of fertility on labor market outcomes do not allow for the simultaneous endogeneity

of childbearing decisions in both labor force participation and labor market outcomes

while also accounting for sample selection. Failing to account for these concerns has the

potential to lead to biased estimates due to omitted variables.

First, consider the effect of ignoring sample selectivity. Selection bias arises from the

fact that only women who participate in the labor force have an observable wage. If the

women for whom the negative impact of childbearing is most significant are the women

most likely to remain out of the labor force, the analyses that ignores the labor force

participation decision will potentially underestimate the family gap. Thus, correcting for

sample selection could lead to more negative estimates. Alternatively, if lower-skilled

women are more likely to leave the labor force in response to having a child, but higher-

skilled women face a larger motherhood penalty (as suggested in Anderson et al. (2002);

Bütikofer et al. (2018) ), this could cause traditional estimates to overstate the family gap.2

2For example, there is evidence that highly educated women return to the workforce sooner than less
educated women.
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Overall, these two effects imply that ignoring sample selection could lead to biased results,

but, a priori, the direction of this bias is ambiguous.

Secondly, let us consider the bias that might result from failing to account for endoge-

nous childbearing in the wage equation. Specifically, consider an example where there

is a negative economic shock that reduces labor market outcomes (such as wages) for

individuals. This same shock could potentially motivate individuals to postpone child-

bearing until the economy improves. In this example, failing to account for endogenous

childbearing in the wage equation is equivalent to omitting a variable that is negatively

related to both childbearing and wages. Consequently, the bias would be positive, lead-

ing to an overestimation of the family gap. Alternatively, ignoring a shock that increases

wages but postpones childbearing decisions (for example prospects of promotions etc)

could underestimate family gap.

Finally, failing to account for endogenous fertility in the selection equation is similar

to the bias resulting from failure to account for endogenous childbearing in the outcome

equation as discussed above. Failure to allow for endogenous childbearing in the selec-

tion equation is comparable to omitting a variable such as a negative economic shock

that reduces the likelihood of participating in the labor market, and the possibility of

having kids would potentially overestimate the effect of childbearing on labor force par-

ticipation. Alternatively, ignoring a shock that increases labor force participation but

postpones childbearing (such as separation from the spouse) could underestimate the

effect of childbearing on labor force participation.

Thus, it is reasonable to argue that the effects of ignoring the simultaneous endogeneity

of fertility decisions (in both labor force participation and the wage equation) and the

effect of ignoring sample selection on family gap remain theoretically ambiguous. This

motivates us to estimate the family gap in a manner that helps us to account for sample

selection as well as endogenous fertility decisions.
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We will use the two-step procedure (Procedure 2.1) that accounts for sample selection

into the labor force and allows for endogenous childbearing in both the outcome (hourly

wages) and selection (labor force participation) equation. We compare our results to

estimates obtained from estimation methods that fail to account for either sample selection

or the endogeneity of fertility decisions (Pooled OLS and Fixed Effects) , only correct for

endogenous fertility (FE2SLS), or only account for sample selection in the labor force

(Heckman).

4.2 Data

We perform estimation of our model presented in Section 2 using data from the National

Longitudinal Survey of Youth (NLSY79) data for 1982–2006. The NLSY79 is a nationally

representative panel survey of men and women who were 14-22 years old in 1979. The

survey was conducted annually from 1979-1994, then biannually thereafter. We restrict

our analysis to non-Hispanic, white women who, at the time of the interview, were

between 22-45 years of age, not in the military, and not attending school. We also exclude

observations with missing values on any explanatory variables, such as region, education,

and marital status. Because of how the NLSY calculates the hourly wage variable, some

individuals receive extremely high or low wages. We follow the previous literature and

exclude those observations where the reported hourly wage rate was less than $1 or more

than $2003. Additionally, all analysis presented will show the results where the outcome

variable is the log of the hourly wage. Finally, because we will use the sex composition

of the first two children as an instrument, we exclude women who never have a child,

who only have one child, or who have more than three children.4 Our final sample

includes 1,618 women, 20,837 person-year observations with 16,388 of those observations

consisting of working women.

3All dollar values are expressed in real 1982-1984 dollars.
4In addition, we exclude women who suffered the loss of a child either before or during our survey

period; this resulted in omitting approximately 852 observations ( 63 women) from the analysis
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The NLSY79 contains cross-round variables for the birth date and the gender of each

child. To capture fertility decisions, we construct a binary variable Only one child present

that takes the value of one when the first child is born. The binary variable Two children present

equals one once the second child is born, and the variable Three children equals one when

the third child is born. We limit our sample to women who will have two or three chil-

dren and thus treat the first and second child as an exogenous (predetermined) variable.

Other explanatory variables include age, age squared, educational attainment indicators,

an indicator for urban locales, marital status indicator, and region-specific indicators. We

use the time means of all the exogenous variables to model the unobserved heterogeneity

à la Mundlak (1978).

Table 2 presents the summary statistics for the sample, broken down by women who

will and will not have three children. There are several differences to highlight between

women who will have three children and those who will not. First, women who will

have three children have a lower hourly wage rate (about 21% lower ) and are less likely

to participate in the labor force. Women with three children are also slightly less likely

to live in an urban area or to have a college degree (or higher). Women with three kids

also appear to disproportionately live in the north central region of the United States, and

women with three children seem to have slightly lower standardized AFQT scores than

those who will not have three kids. Finally, women with three children are more likely

to have their first two kids of the same gender ( roughly 17.2 percentage points). Other

observable characteristics appear to be roughly balanced between the two groups.

Because we restrict our sample to women who will have two or three children, we treat

”Three children present” as the endogenous variable. To instrument for our endogenous

variable, we use the instrument proposed by Angrist and Evans (1996): sex composition

of the first two children. This instrument has been widely used to study the impact of

childbearing, specifically the decision to have a third child, on labor supply decisions. We
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Table 2: Summary Statistics: White Women

Never have 3 children Will have 3 Children Total

Hourly wage rate (in 1982-1984 dollars) 5.228 4.129 4.857
Labor Force Participation 0.814 0.733 0.786
North central 0.306 0.335 0.316
South 0.330 0.321 0.327
West 0.184 0.155 0.174
High school degree 0.456 0.481 0.464
Some college 0.198 0.197 0.198
College degree or greater 0.246 0.175 0.222
Age 30.960 30.878 30.932
Urban 0.703 0.658 0.688
Married 0.732 0.731 0.732
Samesex 0.259 0.431 0.317
Only one child present 0.233 0.155 0.206
Two children 0.528 0.267 0.440
Three children 0.000 0.418 0.141
AFQT 0.534 0.402 0.489
Observations 13803 7034 20837

Data is from NLSY79 1982-2006 for non-Hispanic, white women age 22-45 not currently enrolled in school. “Never have 3 children” is women
who will only have two children throughout the survey period. “Will have 3 children” refers to women who will have three children during
the survey period.

construct an indicator samesex that is equal to one if the first two children have the same

gender. The panel nature of the data allows the instrument to vary over time. That is,

samesex will turn to one after the woman has a second child of the same sex as her first.

The underlying assumption is that the gender of the first two children should not impact

the wages through any mechanism other than increasing the probability of having a third

child.

As an exclusion restriction in the labor force participation equation, we use another

commonly used instrument: an individual’s Armed Forces Qualification Test (AFQT)

score from 1979. (See Semykina (2018), Semykina and Wooldridge (2018)). Here, the

underlying assumption is that a woman’s ability, as captured by the AFQT score, should

affect her decision whether or not to participate in the labor force; however, it should

not affect her wages or her childbearing decisions after we account for other observable

23



variables such as educational attainment variables, age, and others. The AFQT scores are

standardized to have mean zero and unit variance.

4.3 Empirical Results

The key variable of interest is the endogenous variable, “Three children.” The coeffi-

cient on this variable captures the estimated effect of having a third child on a woman’s

log hourly wage. In Table 3, The estimate from Column (1) is -0.238, suggesting that the

third child reduces women’s hourly wage rate by approximately 23.8%. This result is

approximately 43% larger than the estimate presented in Column (2). Column (2), which

reports the pooled OLS results and fails to account for either endogeneity or sample se-

lection, implies that the third child reduces women’s hourly wage rate by approximately

16.7%. The results from FE estimation in Column (3) are much smaller than the estimates

from Procedure 2.1, estimating the family gap of the third child at 7% percent. The result

from the Fixed Effects 2SLS estimation, which fails to account for sample selection, in

Column (4) is larger in magnitude than the OLS estimates. Column (4) also presents the

F statistic for the instrument samesex. The F statistic is well above the “10” threshold

generally recommended, and thus would not be considered a weak instrument.

Column (5) and (6) present the results from using Heckman’s two-step procedure to

correct for sample selection (but ignores the endogenous decision to have a third child).

Column (5) presents the results from the outcome (wage) equation, and Column (6)

shows the marginal effects of the selection equation. The coefficient on “Three children”

in Column (5) is very similar to the result identified from using fixed effects. The coefficient

on “Three children” implies that the third child is negatively related to a women’s labor

force participation. We also find that the AFQT score increases the likelihood of labor

force participation and is statistically significant, suggesting that it is a useful instrument

for selection.
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We find that the FE2SLS (which ignores the sample selection) tends to overstate the

family gap and Heckman (which ignores the common endogeneity) estimates tend to

understate the family gap compared to Procedure 2.1. This result highlights that one

should exercise caution in applying standard instrumental variable estimation and/or

applying standard Heckman correction methods when both nonrandom selection and a

common endogenous dummy is present. If we ignore the estimates that address both the

issues and simply compare the FE and FE2SLS estimates, one might mistakenly conclude

that ignoring the endogenous fertility decisions severely underestimates the family gap.

Similarly, if we only compare the FE and Heckman estimates, one might mistakenly

conclude that ignoring sample selection does not dramatically impact estimates of the

family gap. The estimates from Procedure 2.1 fall between the FE2SLS and the Heckman

estimates.

When we control for the endogeneity of fertility decisions (both in wage equation and

labor force participation equation) and sample selection, we find that the negative effect

of having one child present to be about 0.7 percent, the negative effect of having two

children present to be about 5 percent. The effects of having one child and two children

as estimated from Procedure 2.1 are most similar to the fixed effects estimates.

To put our results in context, it may be helpful to compare our findings to those

observed previously in the literature. A natural point of comparison, though not perfectly

comparable, given the different datasets, is Angrist and Evans (1996). In Angrist and

Evans (1996), the authors use the 1980 census, restricting their sample to women with

more than two children present, and instrument the presence of a third child with the

gender composition of the first two children. Angrist and Evans (1996) find that having

more than two children is associated with a decrease in labor income for their sample

of “all women” of approximately $1,9605, or a 27% reduction.6 The estimates reported

5This estimate is reported in Table 7
6This estimate was calculated using the average labor income for “all women” ($7,160), which is given

in Table 2 of Angrist and Evans (1996)
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from the FE2SLS estimates in Table 3 imply a larger reduction in the hourly wage rate of

approximately 40.6%.7 The estimated effect of three children using Procedure 2.1 suggests

that the FE2SLS estimate overestimates the effect due to the failure to account for the

sample selection.

Waldfogel (1997) uses the NLSY-Young Women cohort using data from 1968 through

1988 and finds that for all women, using pooled OLS, the effect of having one child is

a roughly 5 percent reduction in wages and the effect of having more than one kids is

near 14 percent reduction. She finds slightly larger effects when she restricts her sample

to white women, 8 percent and 18 percent (comparable to our estimates), respectively.

It is important to note that there are a few crucial differences between our data samples

and estimation strategies that make a one-to-one comparison of point estimates difficult.

For one, our sample is limited to women who eventually have two or three kids, thereby

identifying the effect of the marginal, third child. Another important difference is that

Waldfogel (1997) includes a number of mediator variables in her analysis in an attempt to

identify potential mechanisms through which the family gap may operate. The goal of this

paper is not to identify potential channels through which the family gap may operate, but

instead to highlight the importance of accounting for endogeneity and sample selection

using a new, computationally simple econometric methodology. Her finding that women

with two or three children suffer a decrease in their wages by 18 percent (using the pooled

OLS estimation method) is comparable with our pooled OLS estimates on two or three

children thus suggesting that ignoring the endogeneity and selection underestimates the

family gap.

7When we use the sample of women of all races (as is done in (Angrist and Evans, 1996), instead of the
sub-sample of non-Hispanic, white women), the coefficient on “Three children” is -.289. This estimate is
very close to findings in Angrist and Evans (1996). The coefficient on “Three children” using Procedure 2.1
is still smaller than the FE2SLS estimate at -0.176.
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5 Concluding remarks

Frequently, empirical researchers find themselves working with panel data that suffers

from nonrandom sample selection. Further complicating matters, researchers frequently

need to incorporate an endogenous variable that simultaneously impacts the outcome and

selection equation. Within labor economics alone, common examples of this phenomenon

include studying the impact of fertility, marital, or educational decisions on wages. All of

these decisions not only impact the wages observed by the researcher but may also impact

the individual’s decision to participate in the labor force. In this paper, we propose a

computationally simple solution to this problem.

We develop a two-step estimation procedure for linear panel data models with unob-

served effects that suffer from sample selection and have an endogenous dummy variable

common to both the outcome and selection equations. We use a Mundlak (1978) device

to model the unobserved effects in terms of the time means of the exogenous variables.

The two-step procedure comprises estimating a simple biprobit model in the first step and

calculating the correction terms as described in Section 2, then performing OLS estimation

augmented with the correction terms in the second step. A bootstrap procedure easily

obtains the standard errors.

Using Monte Carlo simulations, we show that in the presence of both nonrandom

selection and common endogeneity, the proposed estimator performs better than the

traditional estimates obtain through FE, FE2SLS, or Heckman (estimation methods that

either ignore both endogeneity and selection or one of two the issues). Next, we illustrate

our estimation procedure with an empirical application; specifically, we revisit the family

wage gap- the phenomenon that women with children on average earn less than women

without children. Specifically, we use NLSY data for white women from 1982-2006 and

find that the proposed estimator yields results that are significantly smaller in magnitude

than estimates obtained from FE2SLS or Heckman selection. The results imply ignoring
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one source of bias, such as sample selection and/or common endogeneity issues, may lead

to misleading conclusions.

One important limitation of the estimation method proposed in our paper is that we

impose distributional assumptions on the idiosyncratic errors in the sense that the errors

are assumed to have a trivariate homoskedastic normal distribution. This assumption

is crucial as it not only helps us to obtain the correction terms, making our estimators

are strictly parametric, but also makes the estimation procedure computationally simple.

Further research in this area could involve extending the methodology is to relax this

assumption and explore the nonparametric (or semiparametric) estimation procedures.
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